HTML5 Canvas Pixel Interpolation

JavaScript performance comparison

Revision 16 of this test case created by Mario Klingemann

Info

Compare methods to do canvas pixel interpolation / filtering. Compares stuff like nearest-neighbor, bilinear, etc and various optimizations. Please add any optimizations or other interpolation methods to this page.

This version use an Uint32 Array view - the bit shifts still have to be adjusted for the endianess of the system, so this solution will not work entirely correctly yet.

Preparation code

<canvas id="canvas" width="100" height="100"></canvas>
<script>
Benchmark.prototype.setup = function() {
    var im = new Image();
    im.src = "";
    var canvas = document.getElementById('canvas');
    var context = canvas.getContext('2d');
    context.drawImage(im, 0, 0);
    var imageData = context.getImageData(0, 0, 100, 100);
    var buf32 = new Uint32Array(imageData.buffer);
    var red, green, blue;
   
    function clamp(lo, value, hi) {
      return value < lo ? lo : value > hi ? hi : value;
    }
   
    function nearest(pixels, x, y, offset, width) {
      return (pixels[((y + 0.5) | 0) * width + ((x + 0.5) | 0)] >> (offset << 8)) & 0xff;
    }
   
    function nearest_unrolled(pixels, x, y, width) {
      return pixels[((y + 0.5) | 0) * width + ((x + 0.5) | 0)];
    }
   
    function bilinear(pixels, x, y, offset, width) {
      var xf = x | 0;
      var yf = y | 0;
      var xt = xf + 1;
      var yt = yf + 1;
   
      var percentX = 1.0 - (x - xf);
      var percentY = y - yf;
   
      offset <<= 8;
   
      var top = ((pixels[offset + yt * width + xf] >> offset) & 0xff) * percentX + ((pixels[offset + yt * width + xt] >> offset) & 0xff) * (1.0 - percentX);
      var bottom = ((pixels[offset + yf * width + xf] >> offset) & 0xff) * percentX + ((pixels[offset + yf * width + xt] >> offset) & 0xff) * (1.0 - percentX);
   
      return top * percentY + bottom * (1.0 - percentY);
    }
   
    function bilinear_optimized(pixels, x, y, offset, width) {
      var percentX = x - (x | 0);
      var percentX1 = 1.0 - percentX;
      var percentY = y - (y | 0);
      var fx4 = (x | 0);
      var cx4 = fx4 + 1;
      var fy4 = (y | 0);
      var cy4wo = (fy4 + 1) * width;
      var fy4wo = fy4 * width;
      offset <<= 8;
      var top = ((pixels[cy4wo + fx4] >> offset) & 0xff) * percentX1 + ((pixels[cy4wo + cx4] >> offset) & 0xff) * percentX;
      var bottom = ((pixels[fy4wo + fx4] >> offset) & 0xff) * percentX1 + ((pixels[fy4wo + cx4] >> offset) & 0xff) * percentX;
   
      return top * percentY + bottom * (1.0 - percentY);
    }
   
    function bilinear_unrolled(pixels, x, y, width) {
      var xf = (x | 0);
      var yf = (y | 0);
   
      var percentX = x - xf;
      var percentX1 = 1.0 - percentX;
      var percentY = y - yf;
      var percentY1 = 1.0 - percentY;
   
      var idx = xf + yf * width;
      var top, bottom, r, g, b;
   
      var p00 = pixels[idx];
      var p10 = pixels[idx + 1];
      var p11 = pixels[idx + width + 1];
      var p01 = pixels[idx + width];
   
      top = ((p00 >> 16) & 0xff) * percentX1 + ((p10 >> 16) & 0xff) * percentX;
      bottom = ((p01 >> 16) & 0xff) * percentX1 + ((p11 >> 16) & 0xff) * percentX;
      r = top * percentY + bottom * percentY1;
   
      top = ((p00 >> 8) & 0xff) * percentX1 + ((p10 >> 8) & 0xff) * percentX;
      bottom = ((p01 >> 8) & 0xff) * percentX1 + ((p11 >> 8) & 0xff) * percentX;
      g = top * percentY + bottom * percentY1;
   
      top = (p00 & 0xff) * percentX1 + (p10 & 0xff) * percentX;
      bottom = (p01 & 0xff) * percentX1 + (p11 & 0xff) * percentX;
      b = top * percentY + bottom * percentY1;
   
      return [r, g, b];
    }
   
    function bicubic_value(x, a, b, c, d) {
      return clamp(0, 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * x) * x) * x + b, 255);
    }
   
    function bicubic(pixels, x, y, offset, width) {
      var v = [0, 0, 0, 0];
      var fx = (x | 0);
      var fy = (y | 0);
      var percentX = x - fx;
      var percentY = y - fy;
      offset <<= 8;
   
      for (var i = -1; i < 3; i++) {
        var yw4o = (fy + i) * width * 4 + offset;
        v[i + 1] = (bicubic_value(percentX, ((pixels[(fy + i) * width + (fx - 1)] >> offset) & 0xff), ((pixels[(fy + i) * width + fx] >> offset) & 0xff), ((pixels[(fy + i) * width + (fx + 1)] >> offset) & 0xff), ((pixels[(fy + i) * width + (fx + 2)] >> offset) & 0xff)));
      }
   
      return (bicubic_value(percentY, v[0], v[1], v[2], v[3])) | 0;
    }
   
    function bicubic_optimized(pixels, x, y, offset, width) {
      var a, b, c, d, v0, v1, v2, v3;
      var fx = x | 0;
      var fy = y | 0;
      var percentX = x - fx;
      var percentY = y - fy;
   
      var fx14 = fx;
      var fx04 = fx14 - 1;
      var fx24 = fx14 + 2;
      var fx34 = fx14 + 3;
      var w4 = width;
   
      var yw14o = fy * w4;
      var yw04o = yw14o - w4;
      var yw24o = yw14o + w4;
      var yw34o = yw14o + w4 + w4;
   
      offset <<= 8;
   
      a = ((pixels[yw04o + fx04] >> offset) & 0xff);
      b = ((pixels[yw04o + fx14] >> offset) & 0xff);
      c = ((pixels[yw04o + fx24] >> offset) & 0xff);
      d = ((pixels[yw04o + fx34] >> offset) & 0xff);
      v0 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v0 = v0 > 255 ? 255 : v0 < 0 ? 0 : v0;
   
      a = ((pixels[yw14o + fx04] >> offset) & 0xff);
      b = ((pixels[yw14o + fx14] >> offset) & 0xff);
      c = ((pixels[yw14o + fx24] >> offset) & 0xff);
      d = ((pixels[yw14o + fx34] >> offset) & 0xff);
      v1 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v1 = v1 > 255 ? 255 : v1 < 0 ? 0 : v1;
   
      a = ((pixels[yw24o + fx04] >> offset) & 0xff);
      b = ((pixels[yw24o + fx14] >> offset) & 0xff);
      c = ((pixels[yw24o + fx24] >> offset) & 0xff);
      d = ((pixels[yw24o + fx34] >> offset) & 0xff);
      v2 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v2 = v2 > 255 ? 255 : v2 < 0 ? 0 : v2;
   
      a = ((pixels[yw34o + fx04] >> offset) & 0xff);
      b = ((pixels[yw34o + fx14] >> offset) & 0xff);
      c = ((pixels[yw34o + fx24] >> offset) & 0xff);
      d = ((pixels[yw34o + fx34] >> offset) & 0xff);
      v3 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v3 = v3 > 255 ? 255 : v3 < 0 ? 0 : v3;
   
      a = v0;
      b = v1;
      c = v2;
      d = v3;
      a = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentY) * percentY) * percentY + b;
      return a > 255 ? 255 : a < 0 ? 0 : a ^ 0;
    }
   
    function bicubic_unrolled(pixels, x, y, width) {
      var a, b, c, d, v0, v1, v2, v3, r, g, b;
      var fx = x | 0;
      var fy = y | 0;
      var percentX = x - fx;
      var percentY = y - fy;
   
      var fx14 = fx;
      var fx04 = fx14 - 1;
      var fx24 = fx14 + 1;
      var fx34 = fx14 + 2;
      var w4 = width;
      var yw14r = fy * w4;
      var yw04r = yw14r - w4;
      var yw24r = yw14r + w4;
      var yw34r = yw14r + w4 + w4;
   
      var ca1 = pixels[yw04r + fx04];
      var cb1 = pixels[yw04r + fx04];
      var cc1 = pixels[yw04r + fx04];
      var cd1 = pixels[yw04r + fx04];
   
      var ca2 = pixels[yw14r + fx04];
      var cb2 = pixels[yw14r + fx14];
      var cc2 = pixels[yw14r + fx24];
      var cd2 = pixels[yw14r + fx34];
   
      var ca3 = pixels[yw24r + fx04];
      var cb3 = pixels[yw24r + fx14];
      var cc3 = pixels[yw24r + fx24];
      var cd3 = pixels[yw24r + fx34];
   
      var ca4 = pixels[yw34r + fx04];
      var cb4 = pixels[yw34r + fx14];
      var cc4 = pixels[yw34r + fx24];
      var cd4 = pixels[yw34r + fx34];
   
      // Red
      a = (ca1 & 0xff0000) >> 16;
      b = (cb1 & 0xff0000) >> 16;
      c = (cc1 & 0xff0000) >> 16;
      d = (cd1 & 0xff0000) >> 16;
      v0 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v0 = v0 > 255 ? 255 : v0 < 0 ? 0 : v0;
   
      a = (ca2 & 0xff0000) >> 16;
      b = (cb2 & 0xff0000) >> 16;
      c = (cc2 & 0xff0000) >> 16;
      d = (cd2 & 0xff0000) >> 16;
      v1 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v1 = v1 > 255 ? 255 : v1 < 0 ? 0 : v1;
   
      a = (ca3 & 0xff0000) >> 16;
      b = (cb3 & 0xff0000) >> 16;
      c = (cc3 & 0xff0000) >> 16;
      d = (cd3 & 0xff0000) >> 16;
      v2 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v2 = v2 > 255 ? 255 : v2 < 0 ? 0 : v2;
   
      a = (ca4 & 0xff0000) >> 16;
      b = (cb4 & 0xff0000) >> 16;
      c = (cc4 & 0xff0000) >> 16;
      d = (cd4 & 0xff0000) >> 16;
      v3 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v3 = v3 > 255 ? 255 : v3 < 0 ? 0 : v3;
   
      a = v0;
      b = v1;
      c = v2;
      d = v3;
      r = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentY) * percentY) * percentY + b;
      r = r > 255 ? 255 : r < 0 ? 0 : r ^ 0;
   
      // Green
      a = (ca1 & 0xff00) >> 8;
      b = (cb1 & 0xff00) >> 8;
      c = (cc1 & 0xff00) >> 8;
      d = (cd1 & 0xff00) >> 8;
      v0 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v0 = v0 > 255 ? 255 : v0 < 0 ? 0 : v0;
   
      a = (ca2 & 0xff00) >> 8;
      b = (cb2 & 0xff00) >> 8;
      c = (cc2 & 0xff00) >> 8;
      d = (cd2 & 0xff00) >> 8;
      v1 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v1 = v1 > 255 ? 255 : v1 < 0 ? 0 : v1;
   
      a = (ca3 & 0xff00) >> 8;
      b = (cb3 & 0xff00) >> 8;
      c = (cc3 & 0xff00) >> 8;
      d = (cd3 & 0xff00) >> 8;
      v2 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v2 = v2 > 255 ? 255 : v2 < 0 ? 0 : v2;
   
      a = (ca4 & 0xff00) >> 8;
      b = (cb4 & 0xff00) >> 8;
      c = (cc4 & 0xff00) >> 8;
      d = (cd4 & 0xff00) >> 8;
      v3 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v3 = v3 > 255 ? 255 : v3 < 0 ? 0 : v3;
   
      a = v0;
      b = v1;
      c = v2;
      d = v3;
      g = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentY) * percentY) * percentY + b;
      g = g > 255 ? 255 : g < 0 ? 0 : g ^ 0;
   
      // Blue
      a = ca1 & 0xff;
      b = cb1 & 0xff;
      c = cc1 & 0xff;
      d = cd1 & 0xff;
      v0 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v0 = v0 > 255 ? 255 : v0 < 0 ? 0 : v0;
   
      a = ca2 & 0xff;
      b = cb2 & 0xff;
      c = cc2 & 0xff;
      d = cd2 & 0xff;
      v1 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v1 = v1 > 255 ? 255 : v1 < 0 ? 0 : v1;
   
      a = ca3 & 0xff;
      b = cb3 & 0xff;
      c = cc3 & 0xff;
      d = cd3 & 0xff;
      v2 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v2 = v2 > 255 ? 255 : v2 < 0 ? 0 : v2;
   
      a = ca4 & 0xff;
      b = cb4 & 0xff;
      c = cc4 & 0xff;
      d = cd4 & 0xff;
      v3 = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentX) * percentX) * percentX + b;
      v3 = v3 > 255 ? 255 : v3 < 0 ? 0 : v3;
   
      a = v0;
      b = v1;
      c = v2;
      d = v3;
      b = 0.5 * (c - a + (2.0 * a - 5.0 * b + 4.0 * c - d + (3.0 * (b - c) + d - a) * percentY) * percentY) * percentY + b;
      b = b > 255 ? 255 : b < 0 ? 0 : b ^ 0;
   
      return [r, g, b];
    }
   
    //returns a function that calculates lanczos weight
   
    function lanczosCreate(lobes) {
      return function(x) {
        if (x > lobes)
          return 0;
        x *= Math.PI;
        if (Math.abs(x) < 1e-16)
          return 1
        var xx = x / lobes;
        return Math.sin(x) * Math.sin(xx) / x / xx;
      }
    }
   
    //elem: canvas element, img: image element, sx: scaled width, lobes: kernel radius
   
    function thumbnailer(elem, img, sx, lobes) {
      this.canvas = elem;
      elem.width = img.width;
      elem.height = img.height;
      elem.style.display = "none";
      this.ctx = elem.getContext("2d");
      this.ctx.drawImage(img, 0, 0);
      this.img = img;
      this.src = this.ctx.getImageData(0, 0, img.width, img.height);
      this.dest = {
        width: sx,
        height: Math.round(img.height * sx / img.width),
      };
      this.dest.data = new Array(this.dest.width * this.dest.height * 3);
      this.lanczos = lanczosCreate(lobes);
      this.ratio = img.width / sx;
      this.rcp_ratio = 2 / this.ratio;
      this.range2 = Math.ceil(this.ratio * lobes / 2);
      this.cacheLanc = {};
      this.center = {};
      this.icenter = {};
      setTimeout(this.process1, 0, this, 0);
    }
   
    thumbnailer.prototype.process1 = function(self, u) {
      self.center.x = (u + 0.5) * self.ratio;
      self.icenter.x = Math.floor(self.center.x);
      for (var v = 0; v < self.dest.height; v++) {
        self.center.y = (v + 0.5) * self.ratio;
        self.icenter.y = Math.floor(self.center.y);
        var a, r, g, b;
        a = r = g = b = 0;
        for (var i = self.icenter.x - self.range2; i <= self.icenter.x + self.range2; i++) {
          if (i < 0 || i >= self.src.width)
            continue;
          var f_x = Math.floor(1000 * Math.abs(i - self.center.x));
          if (!self.cacheLanc[f_x])
            self.cacheLanc[f_x] = {};
          for (var j = self.icenter.y - self.range2; j <= self.icenter.y + self.range2; j++) {
            if (j < 0 || j >= self.src.height)
              continue;
            var f_y = Math.floor(1000 * Math.abs(j - self.center.y));
            if (self.cacheLanc[f_x][f_y] == undefined)
              self.cacheLanc[f_x][f_y] = self.lanczos(Math.sqrt(Math.pow(f_x * self.rcp_ratio, 2) + Math.pow(f_y * self.rcp_ratio, 2)) / 1000);
            weight = self.cacheLanc[f_x][f_y];
            if (weight > 0) {
              var idx = (j * self.src.width + i) * 4;
              a += weight;
              r += weight * self.src.data[idx];
              g += weight * self.src.data[idx + 1];
              b += weight * self.src.data[idx + 2];
            }
          }
        }
        var idx = (v * self.dest.width + u) * 3;
        self.dest.data[idx] = r / a;
        self.dest.data[idx + 1] = g / a;
        self.dest.data[idx + 2] = b / a;
      }
   
      if (++u < self.dest.width)
        setTimeout(self.process1, 0, self, u);
      else
        setTimeout(self.process2, 0, self);
    };
    thumbnailer.prototype.process2 = function(self) {
      self.canvas.width = self.dest.width;
      self.canvas.height = self.dest.height;
      self.ctx.drawImage(self.img, 0, 0);
      self.src = self.ctx.getImageData(0, 0, self.dest.width, self.dest.height);
      var idx, idx2;
      for (var i = 0; i < self.dest.width; i++) {
        for (var j = 0; j < self.dest.height; j++) {
          idx = (j * self.dest.width + i) * 3;
          idx2 = (j * self.dest.width + i) * 4;
          self.src.data[idx2] = self.dest.data[idx];
          self.src.data[idx2 + 1] = self.dest.data[idx + 1];
          self.src.data[idx2 + 2] = self.dest.data[idx + 2];
        }
      }
      self.ctx.putImageData(self.src, 0, 0);
      self.canvas.style.display = "block";
    }
};
</script>

Preparation code output

Test runner

Warning! For accurate results, please disable Firebug before running the tests. (Why?)

Java applet disabled.

Testing in unknown unknown
Test Ops/sec
Nearest Neighbor
var red = nearest(buf32, 10.2, 4.6, 0, canvas.width);
var green = nearest(buf32, 10.2, 4.6, 1, canvas.width);
var blue = nearest(buf32, 10.2, 4.6, 2, canvas.width);
pending…
Nearest Neighbor Optimized Unrolled
var rgb = nearest_unrolled(buf32, 10.2, 4.6, canvas.width);
pending…
Bilinear
var red = bilinear(buf32, 10.2, 4.6, 0, canvas.width);
var green = bilinear(buf32, 10.2, 4.6, 1, canvas.width);
var blue = bilinear(buf32, 10.2, 4.6, 2, canvas.width);
pending…
Bilinear Optimized
var red = bilinear_optimized(buf32, 10.2, 4.6, 0, canvas.width);
var green = bilinear_optimized(buf32, 10.2, 4.6, 1, canvas.width);
var blue = bilinear_optimized(buf32, 10.2, 4.6, 2, canvas.width);
pending…
Bilinear Optimized Unrolled
var rgb = bilinear_unrolled(buf32, 10.2, 4.6, canvas.width);
pending…
Bicubic
var red = bicubic(buf32, 10.2, 4.6, 0, canvas.width);
var green = bicubic(buf32, 10.2, 4.6, 1, canvas.width);
var blue = bicubic(buf32, 10.2, 4.6, 2, canvas.width);
pending…
Bicubic Optimized
var red = bicubic_optimized(buf32, 10.2, 4.6, 0, canvas.width);
var green = bicubic_optimized(buf32, 10.2, 4.6, 1, canvas.width);
var blue = bicubic_optimized(buf32, 10.2, 4.6, 2, canvas.width);
pending…
Bicubic Optimized Unrolled
var rgb = bicubic_unrolled(buf32, 10.2, 4.6, canvas.width);
pending…

Compare results of other browsers

Revisions

You can edit these tests or add even more tests to this page by appending /edit to the URL. Here’s a list of current revisions for this page:

0 comments

Add a comment